Maspin is a deoxycholate-inducible, anti-apoptotic stress-response protein differentially expressed during colon carcinogenesis
نویسندگان
چکیده
Increased maspin expression in the colon is related to colon cancer risk and patient survival. Maspin is induced by the hydrophobic bile acid, deoxycholate (DOC), which is an endogenous carcinogen and inducer of oxidative stress and DNA damage in the colon. Persistent exposure of colon epithelial cells, in vitro, to high physiologic levels of DOC results in increased constitutive levels of maspin protein expression associated with the development of apoptosis resistance. When an apoptosis-resistant colon epithelial cell line (HCT-116RC) developed in the authors' laboratory was treated with a maspin-specific siRNA probe, there was a statistically significant increase in apoptosis compared to treatment with an siRNA control probe. These results indicate, for the first time, that maspin is an anti-apoptotic protein in the colon. Immunohistochemical evaluation of maspin expression in human colonic epithelial cells during sporadic colon carcinogenesis (131 human tissues evaluated) indicated a statistically significant increase in maspin protein expression beginning at the polyp stage of carcinogenesis. There was no statistically significant difference in maspin expression between hyperplastic/adenomatous polyps and colonic adenocarcinomas. The absence of "field defects" in the non-neoplastic colonic mucosa of patients with colonic neoplasia indicates that maspin may drive the growth of tumors, in part, through its anti-apoptotic function.
منابع مشابه
The Application of a Non-Radioactive DD-AFLP Method for Profiling of Aeluropus lagopoides Differentially Expressed Transcripts under Salinity or Drought Conditions
Aeluropus lagopoides is a salt and drought tolerant grass from Poaceae family, distributed widely in arid regions. There is almost no information about the genetics or genome of this close relative of wheat that stands harsh conditions of deserts. Differential Display Amplified fragment length polymorphism (DD-AFLP) led to the improvement of a non-radioactive method for which many parameters we...
متن کاملDevelopment and molecular characterization of HCT-116 cell lines resistant to the tumor promoter and multiple stress-inducer, deoxycholate.
Evidence from live cell bioassays shows that the flat mucosa from patients with colon cancer exhibits resistance to bile salt-induced apoptosis. Three independent cell lines derived from the colonic epithelial cell line HCT-116 were selected for resistance to bile salt-induced apoptosis. These cell lines were developed as tissue culture models of apoptosis resistance. Selection was carried out ...
متن کاملDeoxycholate, an Endogenous Cytotoxin/Genotoxin, Induces the Autophagic Stress-Survival Pathway: Implications for Colon Carcinogenesis
We report that deoxycholate (DOC), a hydrophobic bile acid associated with a high-fat diet, activates the autophagic pathway in non-cancer colon epithelial cells (NCM-460), and that this activation contributes to cell survival. The DOC-induced increase in autophagy was documented by an increase in autophagic vacuoles (detected using transmission electron microscopy, increased levels of LC3-I an...
متن کاملStaurosporine synergistically potentiates the deoxycholate‐mediated induction of COX‐2 expression
Colorectal cancer is a major cause of cancer-related death in western countries, and thus there is an urgent need to elucidate the mechanism of colorectal tumorigenesis. A diet that is rich in fat increases the risk of colorectal tumorigenesis. Bile acids, which are secreted in response to the ingestion of fat, have been shown to increase the risk of colorectal tumors. The expression of cycloox...
متن کاملDeoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells.
Nuclear factor kappa B (NF-kappaB) is a redox-associated transcription factor that is involved in the activation of survival pathways. We have previously shown that deoxycholate (DOC) activates NF-kappaB in hepatocytes and colon epithelial cells and that persistent exposure of HCT-116 cells to increasing concentrations of DOC results in the constitutive activation of NF-kappaB, which is associa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2011